当前位置:首页 > 运营模型 > 如何通过数据分析进行活动效果评估?

如何通过数据分析进行活动效果评估?

4年前 (2021-02-04)运营模型

相信对于很多刚入门的分析师小白来说,评估活动效果、洞察业务机会,是所有工作中最可以体现价值感的事情,但也可能是令我们最头疼的事情。本文作者基于自身的实际工作经历,结合一个真实的运营活动,对活动评估中可以复用的数据分析“套路”进行总结和整理,希望能够给初接触数据分析的同学带来帮助。

如何通过数据分析进行活动效果评估?

一般来说,互联网公司的运营活动按照目的可以分为3种:拉新、促活、品牌宣传,尽管每种活动关注的核心绩效指标完全不同,但是分析的思路还是可以套路化的。接下来,本文将以某次促活活动为案例,分享下如何对一场活动的效果进行量化评估。

一、活动背景

伴随着移动互联网用户的增速越来越趋于饱和,用户增长的破局方法不得不从拉新获客转换为如何促活存量用户。

通过第三方广告媒体app(比如微信抖音等)投放针对老用户的素材对用户促活,已经成为很多公司用来提升存量老用户活跃度的有效方法(后续会统称为“渠道拉活”)

某公司的市场投放部门也开始投入预算试水「渠道拉活」这一项目,在项目启动一段时间后,已经回收累积了大量的用户数据,但是:

1、渠道拉活对于DAU的带动贡献究竟有多大?

2、是否值得持续投入更多的资源?

3、活动情况的ROI如何?是否符合预期?

4、活动是否存在改进空间?

这些领导和业务方非常关注的问题,需要分析师基于数据给出公正和客观的答复。

二、分析框架和指标体系

2.1、分析框架

活动整体增量效果评估 (包括短期效果分析、长期效果分析)

ROI 核算(计算单用户的拉新或者促活成本)

参活用户质量评估

活动存在问题分析

2.2、指标体系

如何通过数据分析进行活动效果评估?

2.3、流量规模

数据指标:

DAU

参与活动的用户数(举例:渠道拉活成功召回的用户数)

通过活动首次调起app的UV(举例:通过渠道拉活首次调起app的uv)

通过活动首次调起app的uv占day的比例(举例:通过渠道拉活首次调起uv的dau占比)

可解决的问题:

通过对比事先制定好的活动KPI指标,评估目标完成率;

与其他活动对比,评估促活的核心指标(通常是DAU)是否达到预期;

评估渠道拉活能够召回的用户量级有多大;

评估对DAU的净增量贡献有多大;

2.4、用户质量、用户画像

数据指标:

留存率(次日回访率、7日回访率、30日回访率)

日均使用时长

核心功能渗透率

核心功能人均PV

人群画像(性别、城市、消费能力)

可解决的问题:

评估渠道召回用户的质量

监测是否存在刷量作弊渠道

2.5、用户行为

数据指标:

站外转化漏斗(举例:广告曝光-广告点击-成功调起app-deeplink抵达特定页面)

站内核心行为的转化漏斗(举例:活动页-列表页-详情页)

可解决的问题:

评估用户从站外渠道到抵达App的路径是否顺畅,发现产品bug或者可以改善的机会点

评估活动的站内承接策略是否合理

三、分析过程

3.1、活动效果评估以及活动ROI分析

在量化DAU (或者活跃天数) 贡献时,需要减去用户的自然活跃量,即计算“净增量”贡献。该贡献可以分为当日贡献和长期贡献。

当日贡献是指:当日的召回用户对于当日DAU的增量贡献

长期贡献是指:由于召回用户的后续回流,在后续特定时间范围还会持续贡献的用户天数增量。比如,活动后的50个参与用户,在后续30天内人均活跃天数比活动前提高10天,那么促活的增量贡献就是1500天。

不得不承认,AB实验最擅长处理归因和量化的问题。它的思想是,将流量随机分为数量均匀和特征均匀的两组(即对照组和实验组),实验组用户只有在产品策略上与对照组不同,因此我们可以认为两组用户在同一时间维度上的指标差异,可以完全归因于策略上的差异。

然而,该广告拉活项目无法设计对应的AB实验,但我们可以基于AB测试的思想,构造与实验组“相似”的用户群体作为对照组。具体过程如下:

如何通过数据分析进行活动效果评估?

1、将拉活渠道唤起app的用户作为实验组,未曾被拉活召回的存量用户作为对照组;

2、选取可能影响用户未来活跃度的特征(比如机型、新增渠道、历史活跃度、…),基于“特征相同”的原则,对两组用户划分为 N 对实验组和对照组。注意尽量将特征通过区间离散化,避免划分出的某一组落入的样本数过少,导致两组样本的指标差异不可信,比如特征「新增日期间隔」可以离散化为:7天内、8-14天、14天以上;

3、计算 N 对实验组和对照组的每一组的指标差异值,以及实验组的总指标差异(等于每一组指标差异*人群占比的相乘结果求和)

通过以上方法,可以计算出拉活对于当日DAU的贡献、以及拉活对于未来30天DAU的总增量贡献。

实际上,对于拉活对DAU的单次短期贡献,有更为简便的方法,即基于“首次归因”的思想,通过“拉活首次调起app的uv”进行量化评估,即如果用户多次启动过app,那么只有当通过促活广告首次调起app了,才会计入到促活广告的功劳。

值得一提的是,“首次归因”的方法也可以应用至“产品新上线功能评估”的效果量化中,通常我们可以将“启动app后首次访问该功能的用户量”作为该功能对dau的贡献量。

对于活动成本的核算,我们可以通过 “总成本消耗量 / 总DAU增量”,计算每个DAU增量的成本,以评估ROI是否符合预期。

3.2、用户行为分析、和用户质量评估

可以以「大盘未参活用户」、「同期同类活动」、「往期同类活动」分别作为对比基准,基于用户行为漏斗、留存率、核心行为pv、人均使用时长等指标,识别本次促活策略是否有薅羊毛或者作弊严重的渠道,并评估活动拉来的用户质量好坏。但这里不作为本次分享重点,因此不再展开赘述。

四、结语

作为数据分析师,实际工作中遇到的促活策略往往是五花八门,但是活动效果好坏的评估过程依然是有章可循的。最后,简单总结下本文对于后续活动评估的可复用之处:

1、如何构建活动评估的指标体系;

2、如何量化归因活动的短期贡献(即“首次归因”法);

3、如何在无法开展AB测试的情况下,通过构造对照组的方式,快速地量化评估长期的增量贡献。

扫描二维码推送至手机访问。

版权声明:本文由汇运营发布,如需转载请注明出处。

本文链接:http://www.huiyunying.com/baike/377.html

分享给朋友:

“如何通过数据分析进行活动效果评估?” 的相关文章

书籍推荐:运营人必读的十本书籍

书籍是人类进步的阶梯,此话放到如今依然不过时,而知识改变命运也是铁板钉钉一样的真理,那么适合运营人读的书籍有哪些呢?这里为大家推荐十本不错的书籍。一、《从零开始做运营》作者:张亮var jd_union_pid="3002833661";var jd_union_euid="";这本书很适合没有运营...

最简单实用的六个方法,让你微信好友加到爆!

最简单实用的六个方法,让你微信好友加到爆!

做微商最烦的就是找不到精准的粉丝,没人加你,连微信好友都没多少,那还卖什么货呢!现在做微商,有粉再谈变现,谈模式,谈赚钱......有份便是娘,没粉一切都白搭......今天给大家带来成本最低的吸粉方式,让你的微信好友加到爆!可能有人会认为吹牛逼,因为看你微信好友貌似也不多,那我可以肯定的告诉你,我...

如何从知乎引流,1个月涨1万粉?

如何从知乎引流,1个月涨1万粉?

知乎是目前我国最大的知识问答平台,平台内既有专业人士,也有业余爱好者,知乎为知识的传播者和获取者搭建了平台,也为公众号的运营者带来了一个巨大的商机。我觉得运营知乎比起公众号来说还是要方便很多,因为它的提问和回答根本不需要过多的修饰:你提出你的问题,我发表自己的观点和看法。我认为这样的氛围就很不错,而...

淘宝天猫直通车基础原理与操作

淘宝天猫直通车基础原理与操作

新手上车之前是必须要了解的直通车原理!本次分享分为2个内容知识:1、直通车基础原理2、直通车总共分为哪些计划以及计划的建立我们在推广直通车之前,我们首先要了解直通车的推广原理以及都有哪些推广计划组成,方便我们后期在做直通车推广和直通车优化的一些操作细节,提高我们的推广效果。首先直通车是一款付费的推广...

10万+高质量软文标题的6个细节

10万+高质量软文标题的6个细节

对于软文来说,第一印象就是标题,无论软文的内容是什么,最终目的还是吸引用户去阅读、评论、转载、转化,撰写出一个具有吸引力的标题是很有必要的。想要使软文的标题能够吸引读者,其在质量方面的高要求是必须的,基于这一问题,笔者认为主要应该注意以下6个方面的细节:标题的字数限制标题的模式打造标题的风格表达凸显...

在做运营策略之前,你需要掌握用户分群的N种方式!

在做运营策略之前,你需要掌握用户分群的N种方式!

人群细分是数据分析师们进行用户运营最常用的数据分析方法之一。通过人群细分,可以快速了解产品的核心受众,进而得出洞察结论,指导优化运营策略。很多时候,人群细分之后,分析人员还会进一步分析不同人群在产品核心指标上面的表现差异,从而发现问题并进行优化。从技术视角,用户分群的方式主要有两种:基于规则的分群方...